Friday, 30 August 2013

What is Infinity?

 

Infinity ...
... it's not big ...
... it's not huge ...
... it's not tremendously large ...
... it's not extremely humongously enormous ...
... it's ...

Endless!

Infinity is not a real number

Infinity is not a real number, it is an idea. An idea of something without an end.
Infinity cannot be measured.
Even these faraway galaxies can't compete with infinity.

Here are some more properties:
Special Properties of Infinity
∞ + ∞ = ∞
-∞ + -∞ = -∞

∞ × ∞ = ∞
-∞ × -∞ = ∞
-∞ × ∞ = -∞

x + ∞ = ∞
x + (-∞) = -∞
x - ∞ = -∞
x - (-∞) = ∞

For x>0 :
x × ∞ = ∞
x × (-∞) = -∞
For x<0 :
x × ∞ = -∞
x × (-∞) = ∞

Undefined Operations

All of these are "undefined":
"Undefined" Operations
0 × ∞
0 × -∞
∞ + -∞
∞ - ∞
∞ / ∞
0
1

Example: Isn't ∞ / ∞ equal to 1?
No, because we really don't know how big infinity is, so we can't say that two infinities are the same. For example ∞ + ∞ = ∞, so
 =  ∞ + ∞ which would
mean that:
1 = 2




1 1
And that doesn't make sense!
I could have also made 1=3 and so on ... so we say that ∞ / ∞ is undefined.


Saturday, 24 August 2013

Pronunciation Guide to Mathematicians Name

Pronunciation Guide to Mathematicians
Abel, Niels Henrik (1802-1829) (Ä bul)
Agnesi, Maria Gaetana (1718-1799) (an YAY zee)
Banach, Stefan (1892-1945) (BÄ näkh)
Berkeley, George (1685-1753) (BÄRK lee)
Bernoulli, Jakob/Jacques/James (1654-1705)(ber NOO lee)
Bernoulli, Johann/Jean/John (1667-1748) (ber NOO lee)
Bolzano, Bernhard (1781-1848) (bolt SÄ no)
Bolyai, János (1802-1860) (BOY AY)
Cauchy, Augustin-Louis (1789-1857) (ko SHE)
Cavalieri, Bonaventura (1598-1647) (kä val YAY ree)
Clairaut, Alexis-Claude (1713-1765) (kla ROW, as in row your boat)
d'Alembert, Jean Le Rond (1717-1783) (DÄ lam bâr)
Dedekind, Richard (1831-1916) (DA de kint)
Desargues, Girard (1591-1661) (day ZÄRG)
Descartes, Rene (1596-1650) (day CÄRT)
Dirichlet, Peter Lejune (1805-1859) (dee ree KLAY)
Euclid (YOU klid)
Eudoxus (408-355 B. C.) (you DOK sis)
Euler, Leonhard (1707-1783) (OI ler)
Fermat, Pierre de (1601-1655) (fer MÄ)
Fourier, Jean Baptiste Joseph (1768-1830) (foo RYAY)
Galois, Evariste (1811-1832) (gal WÄ)
Heine, Eduard (1821-1881) (HI na, not a long a)
Hermite, Charles (1822-1901) (er MEET)
Jordan, Camille (1838-1922) (abstract algebra) (zhâr DÄN)
Jordan, Wilhelm (1842-1899) (Gauss-Jordan Elimination) (your DÄN)
Kovalevskaya, Sofia (1850-1891) (kov a LEF skä yä)
Kronecker, Leopold (1823-1891) (KROW nek er)
Kummer, Ernst (1810-1893) (KUM er)
Lagrange, Joseph Louis (1736-1813) (la GRÄNZH)
Laplace, Pierre-Simon de (1749-1827) (la PLAS)
Lebesgue, Henri (1875-1941) (la BEG)
Lie, Sophus (1842-1899) (LEE)
Legendre, Adrien-Marie (1752-1833) (la ZHÄN dra)
Leibniz, Gottfried Wilhelm (1646-1716) (LIP nits, long i)
l'Hospital, Guillaume Francois (1661-1704) (lô pee TAL)
Monge, Gaspard (1746-1818) (MÔNZH)
Napier, John1550-1617) (NAY pee air)
Noether, Emmy (1882-1935) (NOO ta)
Peano, Guiseppe (1858-1932) (pay Ä no)
Poincaré, Henri (1854-1912) (pwan ka RAY)
Another Poincaré link
Riemann, Bernhard (1826-1866) (REE män)
Sylow, Ludwig (1826-1866) (SEE lov)
Thales (THAY leez)
Torricelli, Evangelista (1608-1647) (tor ree CHEL lee)
Weierstrass, Karl (1815-1897) (vi er shträs, long i)